STM32F4-Discovery demo code

/*
    ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
                 2011 Giovanni Di Sirio.
 
    This file is part of ChibiOS/RT.
 
    ChibiOS/RT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    ChibiOS/RT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
 
#include "ch.h"
#include "hal.h"
#include "test.h"
 
static void pwmpcb(PWMDriver *pwmp);
static void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n);
static void spicb(SPIDriver *spip);
 
/* Total number of channels to be sampled by a single ADC operation.*/
#define ADC_GRP1_NUM_CHANNELS   2
 
/* Depth of the conversion buffer, channels are sampled four times each.*/
#define ADC_GRP1_BUF_DEPTH      4
 
/*
 * ADC samples buffer.
 */
static adcsample_t samples[ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH];
 
/*
 * ADC conversion group.
 * Mode:        Linear buffer, 4 samples of 2 channels, SW triggered.
 * Channels:    IN11   (48 cycles sample time)
 *              Sensor (192 cycles sample time)
 */
static const ADCConversionGroup adcgrpcfg = {
  FALSE,
  ADC_GRP1_NUM_CHANNELS,
  adccb,
  NULL,
  /* HW dependent part.*/
  0,
  ADC_CR2_SWSTART,
  ADC_SMPR1_SMP_AN11(ADC_SAMPLE_56) | ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144),
  0,
  ADC_SQR1_NUM_CH(ADC_GRP1_NUM_CHANNELS),
  0,
  ADC_SQR3_SQ2_N(ADC_CHANNEL_IN11) | ADC_SQR3_SQ1_N(ADC_CHANNEL_SENSOR)
};
 
/*
 * PWM configuration structure.
 * Cyclic callback enabled, channels 1 and 4 enabled without callbacks,
 * the active state is a logic one.
 */
static PWMConfig pwmcfg = {
  10000,                                    /* 10KHz PWM clock frequency.   */
  10000,                                    /* PWM period 1S (in ticks).    */
  pwmpcb,
  {
    {PWM_OUTPUT_ACTIVE_HIGH, NULL},
    {PWM_OUTPUT_DISABLED, NULL},
    {PWM_OUTPUT_DISABLED, NULL},
    {PWM_OUTPUT_ACTIVE_HIGH, NULL}
  },
  /* HW dependent part.*/
  0
};
 
/*
 * SPI configuration structure.
 * Maximum speed (12MHz), CPHA=0, CPOL=0, 16bits frames, MSb transmitted first.
 * The slave select line is the pin GPIOA_SPI1NSS on the port GPIOA.
 */
static const SPIConfig spicfg = {
  spicb,
  /* HW dependent part.*/
  GPIOB,
  12,
  SPI_CR1_DFF
};
 
/*
 * PWM cyclic callback.
 * A new ADC conversion is started.
 */
static void pwmpcb(PWMDriver *pwmp) {
 
  (void)pwmp;
 
  /* Starts an asynchronous ADC conversion operation, the conversion
     will be executed in parallel to the current PWM cycle and will
     terminate before the next PWM cycle.*/
  chSysLockFromIsr();
  adcStartConversionI(&ADCD1, &adcgrpcfg, samples, ADC_GRP1_BUF_DEPTH);
  chSysUnlockFromIsr();
}
 
/*
 * ADC end conversion callback.
 * The PWM channels are reprogrammed using the latest ADC samples.
 * The latest samples are transmitted into a single SPI transaction.
 */
void adccb(ADCDriver *adcp, adcsample_t *buffer, size_t n) {
 
  (void) buffer; (void) n;
  /* Note, only in the ADC_COMPLETE state because the ADC driver fires an
     intermediate callback when the buffer is half full.*/
  if (adcp->state == ADC_COMPLETE) {
    adcsample_t avg_ch1, avg_ch2;
 
    /* Calculates the average values from the ADC samples.*/
    avg_ch1 = (samples[0] + samples[2] + samples[4] + samples[6]) / 4;
    avg_ch2 = (samples[1] + samples[3] + samples[5] + samples[7]) / 4;
 
    chSysLockFromIsr();
 
    /* Changes the channels pulse width, the change will be effective
       starting from the next cycle.*/
    pwmEnableChannelI(&PWMD4, 0, PWM_FRACTION_TO_WIDTH(&PWMD4, 4096, avg_ch1));
    pwmEnableChannelI(&PWMD4, 3, PWM_FRACTION_TO_WIDTH(&PWMD4, 4096, avg_ch2));
 
    /* SPI slave selection and transmission start.*/
    spiSelectI(&SPID2);
    spiStartSendI(&SPID2, ADC_GRP1_NUM_CHANNELS * ADC_GRP1_BUF_DEPTH, samples);
 
    chSysUnlockFromIsr();
  }
}
 
/*
 * SPI end transfer callback.
 */
static void spicb(SPIDriver *spip) {
 
  /* On transfer end just releases the slave select line.*/
  chSysLockFromIsr();
  spiUnselectI(spip);
  chSysUnlockFromIsr();
}
 
/*
 * This is a periodic thread that does absolutely nothing except flashing
 * a LED.
 */
static WORKING_AREA(waThread1, 128);
static msg_t Thread1(void *arg) {
 
  (void)arg;
  chRegSetThreadName("blinker");
  while (TRUE) {
    palSetPad(GPIOD, GPIOD_LED3);       /* Orange.  */
    chThdSleepMilliseconds(500);
    palClearPad(GPIOD, GPIOD_LED3);     /* Orange.  */
    chThdSleepMilliseconds(500);
  }
}
 
/*
 * Application entry point.
 */
int main(void) {
 
  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();
 
  /*
   * Activates the serial driver 1 using the driver default configuration.
   * PA2(TX) and PA3(RX) are routed to USART2.
   */
  sdStart(&SD2, NULL);
  palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7));
  palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7));
 
  /*
   * If the user button is pressed after the reset then the test suite is
   * executed immediately before activating the various device drivers in
   * order to not alter the benchmark scores.
   */
  if (palReadPad(GPIOA, GPIOA_BUTTON))
    TestThread(&SD2);
 
  /*
   * Initializes the SPI driver 2. The SPI2 signals are routed as follow:
   * PB12 - NSS.
   * PB13 - SCK.
   * PB14 - MISO.
   * PB15 - MOSI.
   */
  spiStart(&SPID2, &spicfg);
  palSetPad(GPIOB, 12);
  palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL |
                           PAL_STM32_OSPEED_HIGHEST);           /* NSS.     */
  palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) |
                           PAL_STM32_OSPEED_HIGHEST);           /* SCK.     */
  palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5));              /* MISO.    */
  palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) |
                           PAL_STM32_OSPEED_HIGHEST);           /* MOSI.    */
 
  /*
   * Initializes the ADC driver 1 and enable the thermal sensor.
   * The pin PC0 on the port GPIOC is programmed as analog input.
   */
  adcStart(&ADCD1, NULL);
  adcSTM32EnableTSVREFE();
  palSetPadMode(GPIOC, 1, PAL_MODE_INPUT_ANALOG);
 
  /*
   * Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs.
   */
  pwmStart(&PWMD4, &pwmcfg);
  palSetPadMode(GPIOD, GPIOD_LED4, PAL_MODE_ALTERNATE(2));  /* Green.   */
  palSetPadMode(GPIOD, GPIOD_LED6, PAL_MODE_ALTERNATE(2));  /* Blue.    */
 
  /*
   * Creates the example thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);
 
  /*
   * Normal main() thread activity, in this demo it does nothing except
   * sleeping in a loop and check the button state, when the button is
   * pressed the test procedure is launched with output on the serial
   * driver 2.
   */
  while (TRUE) {
    if (palReadPad(GPIOA, GPIOA_BUTTON))
      TestThread(&SD2);
    chThdSleepMilliseconds(500);
  }
}